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Prefrontal Cortex to Accumbens Projections in Sleep
Regulation of Reward

Zheng Liu,"* “Yao Wang,”* ©“Li Cai,' “Yizhi Li,! Bo Chen,' ““Yan Dong,"> and “Yanhua H. Huang'
Departments of 'Psychiatry and 2Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15219

Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation
for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mecha-
nisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase
in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus
accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall
excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic
transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the
medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To
reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimula-
tion of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc
optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without
affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-
motivated behaviors.
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Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered
reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced
enhancement of reward seeking. We identify that the medial prefrontal cortex (mPFC)-to-nucleus accumbens (NAc) glutamater-
gic transmission is selectively weakened following acute sleep deprivation, whose restoration normalizes reward seeking in
sleep-deprived mice. These results suggest a possibility of normalizing sleep deprivation-induced abnormal reward seeking by
targeting specific neural projections, and they demonstrate the mPFC-to-NAc glutamatergic projection as a key circuit-based
target for sleep to regulate reward-motivated behaviors. j
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Introduction in several detrimental psychiatric illnesses. In both humans and
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et al., 2010; Dallaspezia and Benedetti, 2015). However, the
neural circuit mechanisms underlying sleep regulation of re-
ward remain elusive.

The nucleus accumbens (NAc) is considered a limbic—-motor
interface that integrates reward and motivational inputs and
translates them for motor outputs (Mogenson et al., 1980; Rob-
bins and Everitt, 1996; Kelley, 2004). Excitatory glutamatergic
inputs carrying information of context, cues, and behavioral con-
trol from the prefrontal cortex (PFC), hippocampus, basolateral
amygdala (BLA), thalamus, and other regions converge onto the
NAc (Phillipson and Griffiths, 1985; Sesack and Grace, 2010;
Salgado and Kaplitt, 2015). Alterations in glutamatergic trans-
mission or the balance between excitatory and inhibitory inputs
(E/T) to the NAc lead to a variety of types of reward malfunction-
ing, including overeating and drug abuse (Kalivas and Volkow,
2005; Baldo and Kelley, 2007). Whereas the glutamatergic inputs
come from brain regions that are dynamically responsive to sleep
(Muzur et al., 2002; Marshall and Born, 2007; Yoo et al., 2007;
David et al., 2013), it is not known whether and how their synap-
tic contacts on NAc neurons are affected by sleep or sleep loss.
The present study aims to characterize whether and how SDe
affects the glutamatergic projections to NAc neurons and the
overall E/I balance and determine how these SDe-induced alter-
ations may affect reward-elicited behaviors.

Our results show that acute SDe enhanced sucrose self-
administration in mice. As a neural correlate, we found a shift in
the E/I balance within the NAc toward lower excitatory drive
onto NAc principal neurons following SDe. This shift was, at least
partially, mediated by reduced glutamate release from presynap-
tic terminals. Further evidence suggests that the release proba-
bility (Pr) of medial PFC (mPFC)-to-NAc synapses, but not
synapses from the hippocampal, thalamic, or BLA projections,
was reduced. Moreover, reversing this projection-specific synap-
tic alteration by optogenetically boosting the Pr at mPFC-to-NAc
synapses rescued SDe-induced abnormal reward seeking. These
results provide a circuit-based understanding about sleep-
mediated regulation of reward seeking.

Materials and Methods

Subjects

Male C57BL/6 mice (Harlan) or Drdla-tdTomato mice (Jackson Labo-
ratory, stock #016204), 6—8 weeks old, were used at the beginning of the
experiments. Mice were maintained at room temperature (22 + 1°C) and
controlled humidity (60 * 5%) under a 12 h light/dark cycle (lights on at
7:00 A.M., offat 7:00 P.M.), and housed individually with constant access
to food and water. Mouse usage was in accordance with protocols ap-
proved by the Institutional Animal Care and Use Committee at the Uni-
versity of Pittsburgh.

Sleep deprivation

Mice were subjected to SDe through the gentle-handling method, which
consists of keeping the animals awake in their home cages by introducing
fresh bedding and nesting material, gently tapping on or moving the
cage, and, if necessary, gently touching the tail with a soft brush whenever
behavioral signs of sleep, such as closed eyes or sleep posture, are ob-
served (Cirelli and Tononi, 2004; Colavito et al., 2013). Mice were sleep
deprived for 6 h (7:00 A.M.—1:00 P.M.). Mice had food and water ad
libitum throughout the entire procedure.

Behavioral scoring

Two groups of mice (n = 8 each group) were manually scored for behav-
ioral states between 7:00 A.M. and 1:00 P.M. under control conditions or
SDe using criteria as follows: exploring (moving around in the cage,
working on bedding and nesting material, hanging), feeding (working on
food or water), quiet time (including being quietly awake, sitting with
eyes open or with fine movement; and sleeping, eyes closed or sleep
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posture). As it is difficult to behaviorally determine the actual sleep state,
sleep time was determined by EEG/EMG recordings in separate groups of
mice (see the following section).

EEG surgery, recording, and analysis

A group of six mice was used for EEG/EMG recordings. The surgery to
install the EEG apparatus was similar to that described previously
(Krueger and Obal, 1993; Winters et al., 2011; Chen et al., 2015). Briefly,
two stainless-steel wire EMG electrodes were inserted into the nuchal
neck muscle, and two gold-plated wire EEG electrodes (Plastics One)
were installed contralaterally through the skull over the parietal and fron-
tal cortices. Electrode leads were gathered into a plastic socket (Plastics
One) and fixed to the skull with dental cement. All mice were singly
housed after surgery and during subsequent experiments.

EEG and EMG electrodes were connected to the amplifiers via light-
weight cables and commutators (Plastics One). Mice were allowed to
habituate for 3— 6 d before data collection. Baseline EEG and EMG signals
were typically recorded around postnatal day 50 and recorded for 2-3 d
before SDe. EEG and EMG signals were amplified using Grass model
15LT bipolar amplifiers (Grass Technologies) and an analog-to-digital
converter (Contec, USA). The EEG was filtered below 0.1 Hz and above
100 Hz. The EMG was filtered below 30 Hz and above 3 kHz. All signals
were digitized at 128 Hz and collected using Vital Recorder software
(Kissei Comtec). All signals were manually scored for sleep states in 10 s
epochs using Sleep Sign for Animal software (Kissei Comtec). Wakeful-
ness was identified by desynchronized EEG and high EMG activities;
non-rapid eye movement (NREM) sleep exhibited high-amplitude slow
waves and lower EMG activity; and rapid eye movement (REM) sleep
exhibited typical EEG theta activity and extremely low EMG activity.
Consolidated sleep durations were determined by the same sleep states in
a stretch of time of no less than 20 s (two epochs). For the EEG power
spectrum analysis, EEG signals underwent fast Fourier transformation
using a 0.5 Hz frequency bin and were normalized to the average delta
power (0—4 Hz for NREM) or theta power (5-10 Hz for REM) of the
baseline condition (before SDe). All data were coded for sleep scoring
and then decoded for data compiling. SDe and recovery sleep were com-
pared with the sleep on baseline days.

Plasma corticosterone assay

Three groups of mice (n = 8 each group) singly housed in the same
conditions were used for this assay. One group was sleep deprived by the
method described above. Another group was allowed to have normal
sleep in their home cages during the same period and served as negative
controls. Both groups had 20 min of wakeful time after 1:00 P.M. before
blood sampling. A third group was subjected to acute physical restraint
for 30 min in mouse restrainers before blood sampling and served as
positive stress controls. All blood samples were collected at the same time
of the day, at ~1:30-2:00 P.M.

The mice were decapitated after isoflurane anesthesia, and trunk blood
was collected in heparin-containing tubes. Samples were kept on ice for
<30 min before being centrifuged at 1500 X gat 4°C for 10 min. The
supernatant was stored at —80°C for later analysis. Plasma cortico-
sterone concentrations were determined by Corticosterone ELISA Kit
(Enzo Life Sciences).

Sucrose self-administration

Sucrose self-administration training was conducted in operant-
conditioning chambers (Med Associates), each containing an active and
an inactive lever, a conditioned stimulus (CS) light above each lever, a
house light, and a food dispenser. Pressing the active lever resulted in the
delivery of a sucrose pellet (20 mg; Bio-Serv, catalog #F05301, chocolate
flavored) and illumination of a CS light above the active lever for 1 s.
Pressing the inactive lever had no reinforcement consequences. Mice
were trained overnight on the first night on a fixed ratio (FR) I reinforce-
ment schedule, followed by FR3 on the third night and FR5 on the fifth
night. The mice were then trained on the FR5 schedule for 30 min daily
until a stable baseline across 3 or 4 d was obtained. On baseline days, the
mice were aroused for ~20 min before tests. The baseline level was de-
termined by the 3 d average before SDe. On SDe days, the mice under-
went SDe from 7:00 A.M. to 1:00 P.M. and were tested thereafter. The
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Figure 1.  SDe enhances motivation for sucrose reward. 4, Mouse behavioral states were manually scored under control conditions or SDe between 7:00 A.M. and 1:00 P.M. Compared to the control group,
mice under SDe spent less quiet time and increased the time exploring and feeding. n = 8 each group. B, Sleep measurements based on EEG and EMGssignals showing that, compared to the baseline control days,
SDe decreased total sleep time (left), resulting from fewer numbers of NREM and REM sleep episodes (middle) and shorter durations of the individual sleep episodes (right). n = 6. ¢, NREM and REM sleep time
calculated in 2 h bins showing reduction during SDe and rebound during recovery sleep. n = 6. D, NREM and REM power spectra during the first hour of recovery sleep, showing rebound delta power in the
0.5-4.0 Hzrange during NREM sleep. n = 6. E, Plasma corticosterone levels measured following control conditions, SDe, or acute physical restraint stress (Stress) showing no significant increase upon SDe and
asignificantincrease upon acute stress.n = 7— 8 each group. F, Mice trained to self-administer sucrose pellets were able to maintain astable level of lever pressing over multiple days underan FR5 schedule. Lever
pressing at the active lever was increased following SDe and normalized 1d after SDe. The number of inactive-lever presses remained low throughout the course. n = 16. Asterisks indicate significance compared
totheaverage of the 3 d baseline before SDe. G, The number of sucrose pellets obtained by lever pressing showed a similar increase following SDe, which recovered after 1d. n = 16. Asterisks indicate significance
compared to the average of the 3 d baseline before SDe. H, Cumulative plot of active-lever pressing for the 30 min testin 5 min bins. n = 16. Asterisks indicate the main effect of SDe; p << 0.01 or less at each time
point from 5 to 30 min. /, The latency, defined as the time elapsed before first press of the active lever, was decreased following SDe and recovered 1d after SDe. n = 16. Asterisks indicate significance compared
to the average of the 3 d baseline before SDe. J, Lever pressing without delivery of sucrose pellets was recorded for a 5 min test. The number of presses of the active lever was increased following SDe.n = 10.
Asterisksindicate the main effect of SDe. K, In two separate tests, the free consumption of either sucrose or food pellets was measured during 30 min tests on baseline days, following SDe, and after recovery sleep.
Sucrose pellet consumption was increased following SDe, whereas food pellet consumption was decreased. Both effects returned to the baseline levels 1 d after recovery sleep. n = 12 each group. Asterisks
indicate significance compared to the average of the 3 d baseline before SDe. Dotted lines indicate the 3 d average before SDe as the baseline levels. All values are represented as mean = SEM. *p << 0.05; **p <
0.01; ***p < 0.001. QT, quiet time; E, exploring; F, feeding; Rec, recovery sleep; N, NREM; R, REM; Ctl, control.
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Figure 2.  SDe reduces glutamatergic transmission onto NAc MSNs. A, Evoked mixed postsynaptic currents (black), AMPAR
EPSCs (recorded in the presence of picrotoxin, 100 wum; red), and GABA,R IPSCs (subtracted; blue) in example NAc MSNs from mice
after control sleep, SDe, or 1d after SDe. B, Summarized results showing that SDe significantly reduced the peak amplitude ratio of
AMPA/GABA; the reduction was not detected in mice 1 d after SDe. n = 17-24 cells per group from 8 —11 mice each. €, Example
AMPAR EPSCs evoked by paired-pulse stimulations (100 ms interpulse interval) in NAc MSNs from mice after control sleep, SDe, or
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same mice were tested 1 d later, after recovery
sleep. All daily trainings and tests occurred at
~1:30 P.M. The mice had ad libitum access to
water but not food during the overnight train-
ing. No water or food was provided for the 30
min daily trainings or tests.

Food or sucrose pellet consumption tests
For the food consumption test, freely available,
grain-based food pellets (20 mg; Bio-Serv, cat-
alog #F0163) were used under different sleep
conditions. After adaptation to the food pellets
and the testing chamber, all testing sessions oc-
curred at ~1:30 P.M. for 30 min daily. The
mice were provided with a dish of food pellets
at the beginning of the test, and the remaining
pellets at the end of the 30 min test were
counted to calculate the number of pellets con-
sumed during the test. No water was provided
during the test. Consumptions following nor-
mal sleep, SDe, and recovery sleep were com-
pared. For the sucrose pellet consumption test,
the mice underwent the same procedures ex-
cept that that the sucrose pellets (20 mg; Bio-
Serv, catalog #F05301, chocolate flavored)
were used instead of food pellets.

Viral vectors

Adeno-associated virus (AAV) vectors were
used to express channelrhodopsin 2 (ChR2)
or stabilized step function opsin (SSFO) with
fluorescent markers in selected brain regions.
AAV2-hSyn-ChR2-EYFP and AAV2-CaMK
[1a-SSFO-mCherry were obtained from the
University of North Carolina Vector Core.

<«

1d after SDe. D, Summarized results showing that the PPR of
AMPAREPSCs wasincreased after SDe and normalized 1 d after
SDe.n = 16-21 cells per group from 6 —7 mice each. , Left,
Example NMDAR EPSCs evoked by paired-pulse stimulations
(100 ms interpulse interval) in NAc MSNs from mice after con-
trol sleep or SDe. Right, Summarized results showing in-
creased PPR of NMDAR EPSCs after SDe. n = 15 cells per group
from 6 —7 mice each. F, Left, Example GABA,R IPSCs evoked by
paired-pulse stimulations (100 ms interpulse interval) in NAc
MSNs from mice after control sleep or SDe. Right, Summarized
results showing no change in IPSC PPR after SDe.n = 16 cells
per group from 6 mice each. G, Left, Example postsynaptic
currents (mixed, black; EPSC, red; IPSC, blue) in NAc D,R MSNs
from mice after control sleep or SDe. Right, Summarized re-
sults showing a decreased AMPA/GABA ratio after SDe. n =
13-16 cells per group from 5-7 mice each. H, Left, Example
AMPAR EPSCs evoked by paired-pulse stimulations (100 ms
interpulse interval) in NAc D;R MSNs from mice after control
sleep or SDe. Right, Summarized results showing an increased
PPR of AMPAR EPSCs after SDe (100 ms interpulse interval).
n = 13-22 cells per group from 5— 8 mice each. /, Left, Exam-
ple postsynaptic currents (mixed, black; EPSC, red; IPSC, blue)
in NAc D,R MSNs from mice after control sleep or SDe. Right,
Summarized results showing a decreased AMPA/GABA ratio
after SDe. n = 12-15 cells per group from 5-7 mice each. J,
Left, Example AMPAR EPSCs evoked by paired-pulse stimula-
tions (100 ms interpulse interval) in NAc D,R MSNs from mice
after control sleep or SDe. Right, Summarized results showing
anincreased PPR of AMPAR EPSCs after SDe (100 msinterpulse
interval). n = 18-20 cells per group from 5-7 mice each.
*p < 0.05; **p < 0.01; ***p < 0.001 (compared to mice
without SDe). All values are represented as mean = SEM.
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Stereotaxic surgeries

For injection of viral vectors, mice were anesthetized with a ketamine/
xylazine mixture (100/10 mg/kg, i.p.) and placed in a stereotaxic appa-
ratus (Kopf Instruments). A 34 gauge injection needle connected to a
Hamilton syringe driven by a microinfusion pump (Harvard Apparatus)
was used to bilaterally inject 1 ul per site (0.2 wl/min) of the viral vector
solution into one of the four targeted brain regions: the infralimbic
mPFC (+1.75 mm AP, £0.45 mm ML, —2.8 mm DV), ventral hip-
pocampus (—2.9 mm AP, =£2.8 mm ML, —4.4 mm DV), dorsal medial
thalamus (—1.0 mm AP, =0.4 mm ML, —3.2 mm DV), and caudal BLA
(¢cBLA; —1.8 mm AP, =3.1 mm ML, —5.0 mm DV). These subregions
are known to project to the medial dorsal NAc shell (Fig. 3), where we
observed altered transmission following SDe (Fig. 2). For in vivo optoge-
netic studies, a guide cannula (26 gauge, stainless steel) was bilaterally
implanted 1 mm above the NAc (+1.55 mm AP, 0.6 mm ML, —3.4
mm DV) and secured on the skull by a stainless-steel screw and light-cure
resin cement (NX3 from Henry Schein). Mice started behavioral training
~3—4 weeks after surgery and were tested/recorded ~6—9 weeks after
surgery.

Imaging of viral-mediated gene expression

Mice were perfused transcardially with 0.1 m PBS followed by 4% (w/v)
paraformaldehyde in PBS. Brains were removed carefully and given an
additional 48 h postfix in 4% paraformaldehyde, and then transferred to
30% sucrose in PBS for 48 h before sectioning. Coronal or sagittal sec-
tions (35 wm) were cut with a cryostat (Microm HM550). Sections were
washed in PBS and mounted using Fluoromount-G mounting medium
(Southern Biotech). Expression of enhanced yellow fluorescent protein
(EYFP) and mCherry at the injection and projection sites were examined
using an Olympus IX71 fluorescence microscope and images were taken
at4X or 10X original magnification using a QImaging camera and Meta-
Morph Advanced software. Fluorescent axons at the projection site
(NAc) were further imaged under 60X magnification using an Olympus
FV1200 IX83 confocal microscope and FV10 software. Optical sections
were ~5-6 um thick.

In vitro electrophysiology

NAc acute slice preparation. Mice for the SDe group were killed immedi-
ately following SDe at ~1:30 P.M. Control mice remained in their home
cages without disturbance and were also killed at ~1:30 P.M., after ~20
min of arousal. Acute brain slices were prepared as described previously
(Huang et al., 2009). Briefly, each mouse was deeply anesthetized with
isoflurane and decapitated, and the brain was removed and sliced using a
vibratome (Leica VT1200s) in 4°C cutting solution containing the fol-
lowing (in mM): 135 N-methyl-p-glucamine, 1 KCl, 1.2 KH,PO,, 0.5
CaCl,, 1.5 MgCl,, 20 choline-HCO3, and 11 glucose, pH adjusted to 7.4
with HCI, and saturated with 95% O,/5% CO,. Coronal (Figs. 2, 3) or
sagittal slices (Fig. 4) of 200 wm thickness were cut containing the NAc
subregions. Slices were allowed to recover in oxygenated artificial cere-
brospinal fluid (aCSF) [containing (in mMm) 119 NaCl, 2.5 KCl, 1
NaH,PO,, 1.3 MgCl,, 2.5 CaCl,, 26.2 NaHCOs;, and 11 glucose, 290
mOsm, saturated with 95% O,/5% CO,] first in 37°C for 15-20 min and
then at room temperature for a total of 1-2 h. For recordings, one slice
was transferred from the holding chamber to a submerged recording
chamber, where it was continuously perfused with oxygenated aCSF
maintained at 31 = 1°C.

Electrophysiological recordings. Slice recordings lasted for 45 h after
preparation. Whole-cell voltage-clamp recordings were made under vi-
sual guidance (40X, infrared Dodt contrast imaging) from NAc neurons
located in the dorsal-medial shell region. A patch electrode of 3-5 MQ)
was filled with a Cs *-based internal solution containing the following (in
mMm): 108 Cs-methanesulfonate, 15 CsCl, 5 tetraethylammonium chlo-
ride, 20 HEPES, 0.4 EGTA, 2.5 MgATP, 0.25 Na;GTP, 1 QX-314, 7.5
phosphacreatine (Na,), and 1 L-glutathione, pH 7.25-7.30, 290 mOsm.
Excitatory afferents were stimulated at 0.1 Hz by a constant-current iso-
lated stimulator (DS3; Digitimer) using a monopolar electrode (glass
pipette filled with aCSF) with a pulse duration of 0.1 ms. For light-evoked
responses, a transistor-transistor logic (TTL)-controlled laser light 0of 473
nm was delivered as 0.3—1 ms pulses through the 40X objective lens onto
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the slice. Stimulation of SSFO was achieved by a train of light pulses (10
pulses of 50 ms duration at 10 Hz). The output at the objective lens was
~10 mW. At least 5 min of a stable baseline was recorded before data
collection. In all recordings, series resistance was 8—15 M() and was left
uncompensated. Series resistance was monitored continuously during all
recordings, and a change beyond *15% resulted in exclusion of the cell
from data analysis. Synaptic currents were recorded with a MultiClamp
700B amplifier (Molecular Devices), filtered at 2.6 -3 kHz, amplified five
times, and then digitized at 20 kHz with a Digidata 1440A analog-to-
digital converter (Molecular Devices). Stimulus artifacts of electrical
stimulations were truncated in presentation for clarity. Picrotoxin (100
uM) was included in the bath in most recordings to inhibit GABA, re-
ceptor (GABA,R)-mediated responses. Tetrodotoxin (1 um) was bath
applied when recording miniature ESPC (mEPSCs) or miniature IPSCs
(mIPSCs). NBQX (5 um) was bath applied to block AMPA receptors
(AMPARSs; Fig. 2 E, F). Tetrodotoxin was purchased from Alomone Labs,
QX-314 and NBQX were purchased from Tocris Bioscience, and all other
reagents were purchased from Sigma-Aldrich.

Electrophysiological recordings were initially analyzed using Clampfit
(version 9 or 10). For variance-mean (V-M) analysis (Fig. 3), the vari-
ance and mean amplitude were calculated for each of the five EPSCs in
the train from ~50-100 consecutive sweeps. The parabola function is
y = A* X — B* X? where yis the variance and X is the mean amplitude;
A and B can thus be derived through fitting (Fig. 3, example curves). With
mathematical assumptions and simplifications, the average quantal con-
tent (Q) = A, N = 1/B, and the Pr at a particular stimulus in the train is
P; = X; * B/A. Pr at the first stimulus in the train was calculated for all
projections under control and SDe conditions.

In vivo optogenetics

The optic fibers were attached with an FC/PC adaptor to a 473 nm blue
laser (Shanghai Laser and Optics), which was TTL-controlled by a pulse
generator (A-M Systems). Optic fiber light intensity was adjusted to ~10
mW at the ending of each branch. Before attaching the optic fibers to the
head-mounted guide cannula, the mouse was briefly sedated with isoflu-
rane to allow smooth insertion and to prevent damage to the optic fibers.
The tips of the stripped optic fibers extended 1 mm beyond the tips of the
guide cannula. A train of light pulses (10 pulses of 50 ms at 10 Hz) was
delivered bilaterally under anesthesia. We used a train of light pulses
rather than sustained illumination because light pulses were sufficient to
achieve our intended presynaptic manipulation while having less con-
cern of tissue damage compared to sustained illumination. After the
mouse was fully awake and mobile [~8 min after light stimulation (LS)],
the mouse was placed in the testing chamber. Control mice were also
sedated with isoflurane over the same duration of time, and a sham optic
fiber was attached to the head-mounted guide cannula. After the same
time interval (~8 min), they were placed into the testing chamber. The
mice underwent four testing conditions in a randomized counterbal-
anced manner: control (with brief anesthesia and optic fiber insertion),
control with LS, SDe (with brief anesthesia and optic fiber insertion), SDe
with LS. Baseline levels were the average from 3—4 d before each corre-
sponding test.

Statistical analysis

All data were analyzed without prior awareness of the treatment (control
or SDe; with or without light stimulation). Each experiment was repli-
cated in at least five mice unless specified otherwise for electrophysiolog-
ical analysis (approximately two to six cells recorded from each mouse),
and 8-16 mice were used per group for behavioral analysis. Statistical
analysis was performed using Prism GraphPad (version 6). Statistical
significance was assessed using ¢ tests (for two-group comparisons; two-
tailed tests), one-way ANOVA (single factor multiple groups), or two-
way repeated-measures (RM) ANOVA, followed by Bonferroni posttest.
For two-factor ANOVA, factor A was assigned for the treatments (e.g.,
control vs SDe) and factor B was assigned for testing time. The statistical
results are primarily presented in the F and p values of the main effect of
factor A, which was the primary research interest. Degrees of freedom
of between (b) and within (w) treatments are presented as Fy, ... A value
of p < 0.05 was considered statistically significant. For all experiments
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Figure3. SDeselectively reduces the Prat mPFC-to-NAc synapses. A, E, I, M, Images showing the injection sites (*) of the viral vector AAV2-ChR2-EYFP and expression of ChR2-EYFP in the mouse

mPFC (A), ventral hippocampus (E), thalamus (/), and cBLA (M) on coronal brain sections. Right, Action potentials could be reliably evoked by 0.3— 0.5 ms light pulses from cell soma located in the
injection sites. B, F, J, N, Images under 4X and 60} magpnifications showing the ChR2-EYFP-expressing axons projected into the NAc (coronal sections). Scale bars: Left, 500 m (4<); right, 50
um (60X). ¢, G, K, 0, Example AMPAR EPSCs evoked by a repeated train of light pulses (5 pulses of 0.5-1 ms at 20 Hz) applied locally within the NAc, recorded from (Figure legend continues.)
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involving electrophysiology using behaviorally treated animals, both
cell- and animal-based statistics were performed and reported, with
numbers represented as # = number of cells/number of animals. All
values are represented as mean * SEM.

Results

SDe enhances motivation for sucrose reward

To test how our gentle-handling SDe (see Materials and Meth-
ods) may affect the general behavioral states of the mice, we
scored their voluntary behaviors under control conditions or SDe
between 7:00 A.M. and 1:00 P.M. Under control conditions, the
mice (n = 8) had mostly quiet time (90.6 = 1.9% of total time),
but also spent time exploring (6.5 = 1.2%) and feeding (2.9 =
1.0%) between bouts of sleep. Mice under SDe (n = 8) showed
significantly reduced quiet time (21.9 % 3.8% of total time, p <
0.001, ¢ test) and spent more time exploring (66.4 * 2.9%, p <
0.001, t test) and feeding (11.6 £ 1.2%, p < 0.001, ¢ test; Fig. 1A).
The increase in feeding likely reflects their increased energy ex-
penditure, and it also suggests that our gentle-handling method
minimally disturbs their natural voluntary behaviors.

To examine the efficacy of the gentle handling procedure on
sleep, we recorded EEG and EMG signals from a separate group
of mice (n = 6) underwent the same SDe treatment. As shown in
Figure 1B, gentle-handling SDe effectively reduced, albeit not
eliminated, the total sleep time (control, 157 = 9 min; SDe, 36 *
3 min; p < 0.001, paired ¢ test). The reduction was attributable to
fewer numbers of sleep episodes (control vs SDe, NREM, 89.9 =
10.8 vs 38.4 = 4.2, p < 0.01; REM, 23.8 2 2.2vs6.3 £ 3.6,p <
0.01; paired ¢ test) as well as shortened durations of individual
episodes (control vs SDe, NREM, 94.2 = 11.0 s vs 54.7 = 4.75 s,
p < 0.05; REM, 58.3 * 5.70 s vs 26.0 = 8.08 s, p < 0.05; paired ¢
test). These results verify the efficacy of our gentle-handling SDe
in reducing sleep.

During recovery sleep following SDe, the mice showed signif-
icant rebound in both NREM and REM sleep time (NREM,
Fus = 841, p < 0.05; REM, F, 5 = 8.87, n = 6, p < 0.05;
two-way RM ANOVA; Fig. 1C). In addition, during the first hour
of recovery sleep, there was significant rebound of NREM delta
power in the 0.5-4.0 Hz range (F, 5, = 11.14, p < 0.05, two-way
RM ANOVA; Fig. 1D), suggesting enhanced slow-wave activity
during recovery sleep. These results demonstrate that our gentle-
handling SDe induces sufficient sleep debt, which leads to clear
sleep rebound after SDe, as expected based on previous studies
(Fenzl et al., 2007).

To test the extent to which our SDe method causes stress to the
mice, we measured the plasma corticosterone levels following
SDe, which is commonly used to assess SDe-induced stress (Su-
checki et al., 1998; Kopp et al., 2006; Palchykova et al., 2006;
Colavito et al., 2013). As a positive control, we included a group
of mice with acute physical restraint, a known stressful condition.
As shown in Figure 1E, mice after SDe did not have significantly
altered corticosterone levels compared to the control group after
normal sleep (n = 8 each group, p = 0.842, Bonferroni posttest,

<«

(Figure legend continued.) ~ NAcMSNs at —70mV in the presence of picrotoxin (100 wum) from
mice after control sleep (left) or SDe (right). Averaged traces are shown in red. The correspond-
ing variance-mean plots (bottom) from the EPSC trains were used to generate the parabolic
fittings (solid lines) and to estimate the Pr. D, H, L, P, Summarized results showing decreased Pr
within the mPFC—NAc pathway following SDe (D), but not in hippocampus—NAc, thalamus—
NAc, or (BLA-NAc pathways (H, L, P, respectively). n = 11-18 cells per group from 25 mice
each. *p < 0.05 (compared to mice without SDe). All values are represented as mean == SEM.
ac, anterior commissure; Thal, thalamus; vHipp, ventral hippocampus.
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one-way ANOVA), whereas those receiving acute physical re-
straint had significantly elevated corticosterone levels (n =7, p <
0.001, Bonferroni posttest). Furthermore, both control (awak-
ened 20 min before test) and SDe groups were within the normal
range typically observed in male mice around this time of day
(Kakihana and Moore, 1976; Barriga et al., 2001; Malisch et al.,
2008). These results are consistent with previous reports showing
minimal stress induced by the gentle-handling SDe procedure
(Kopp et al., 2006; Palchykova et al., 2006). Together, the above
results suggest that our gentle-handling SDe method effectively
reduces sleep with low stress liability.

To understand the behavioral consequences of SDe on re-
ward, we tested sucrose self-administration (see Materials and
Methods) in mice after various sleep manipulations. As shown in
Figure 1F, following SDe, mice achieved a significantly higher
number of active-lever presses for sucrose pellets compared to
the baseline, which recovered 1 d after SDe (F(, 5,y = 17.99, n =
16, p < 0.001, one-way RM ANOVA; control vs SDe, p < 0.001;
control vs recover, p > 0.999); the inactive-lever pressing re-
mained at the baseline low level (F, 5oy = 1.485, p = 0.243, one-
way RM ANOVA), suggesting that the increase in active-lever
pressing was not due to a general increase in nonspecific lever
pressing. The mice also obtained more sucrose pellets following
SDe, which returned to the baseline level 1 d after SDe (F, 55y =
19.45, n = 16, p < 0.001, one-way RM ANOVA; control vs SDe,
p < 0.001; control vs recover, p = 0.887; Fig. 1G). Detailed anal-
ysis in 5 min bins revealed that the higher level of active-lever
pressing on the SDe day was evident throughout the 30 min test
(SDe by time interaction, F g ooy = 13.54, p < 0.001; main effect of
SDe, F(; 15y = 22.69, p < 0.001; main effect of time, F4 ) =
240.8, p < 0.001, two-way RM ANOVA; p < 0.01 or less at 5-30
min, control vs SDe, Bonferroni posttests; Fig. 1H). In addition,
mice on the SDe day first approached the active lever sooner than
on the baseline days, thus exhibiting shortened latencies; the ef-
fect returned to the baseline level 1 d after SDe (F, 5oy = 7.982,
n = 16, p < 0.01, one-way RM ANOVA; control vs SDe, p <
0.001; control vs recover, p = 0.393; Fig. 1I). These results suggest
that SDe reversibly enhances reward seeking and taking.

The shortened latency for active-lever pressing, before any
sucrose pellet was delivered, suggests the possibility of enhanced
motivation to obtain reward. To test this possibility, we ran a 5
min test for active-lever pressing without actual delivery of su-
crose pellets. Compared to the baseline days, mice after SDe had
significantly higher numbers of active-lever pressing (SDe by
time interaction, Fs 45, = 8.848, p < 0.001; main effect of SDe,
Foy = 7.270, n = 10, p < 0.05; main effect of time, F5 ,5) =
63.61, p < 0.001; two-way RM ANOVA; Fig. 1]), consistent with
enhanced motivation for reward.

Finally, to understand the extent to which SDe preferentially
enhances reward (sucrose) seeking over general food consump-
tion, we separately tested their free consumptions of either
sucrose or grain-based food pellets after various sleep manipula-
tions (see Materials and Methods). Interestingly, while mice con-
sistently showed increases in sucrose pellet consumption
following SDe (F(, ;) = 49.47, n = 12, p < 0.001, Bonferroni
posttest, one-way RM ANOVA), their food pellet consumption,
tested independently, was decreased following SDe compared to
the baseline days (F, 5, = 9.133, n = 12, p < 0.01, Bonferroni
posttest, one-way RM ANOVA). Both effects returned to the
baseline levels after recovery sleep (control vs recovery, sucrose,
p = 0.895; food, p = 0.889, Bonferroni posttest; Fig. 1K). These
results suggest that the increase in sucrose seeking and consump-
tion was not likely attributable to increased hunger following



7904 - J. Neurosci., July 27, 2016 - 36(30):7897-7910

SDe. Indeed, since the mice had ad libitum access to food and
water during SDe, and because they spent much more time feed-
ing during SDe than under control conditions (Fig. 1A), they
were likely to be less hungry following SDe, which is reflected in
the decreased food consumption after SDe (see Discussion). To-
gether, the contrasting results between sucrose and food con-
sumptions following SDe further suggest that SDe selectively
enhances motivation for sucrose reward.

SDe reduces glutamatergic transmission onto NAc medium
spiny neurons

To understand the neural mechanisms of the SDe effects on re-
ward seeking, we focused on the NAc. The principle neurons of
the NAc are the medium spiny neurons (MSNs). Lacking intrin-
sic pace-making mechanisms, MSNs rely primarily on the inte-
gration of excitatory and inhibitory synaptic inputs to generate
functional output. Glutamatergic transmission in the NAc has
been known to process reward valence and regulate various types
of reward seeking, including natural reward and drug reward
(Maldonado-Irizarry et al., 1995; Cornish and Kalivas, 2000; Ka-
livas, 2009; Faure et al., 2010). We first tested whether the balance
between the excitatory synaptic input and the inhibitory input is
altered in NAc MSNs by SDe. Immediately after 6 h of SDe,
AMPAR-mediated EPSCs and GABAR-mediated IPSCs were
isolated pharmacologically. As shown in Figure 2, A and B, the
ratio of the peak amplitude of AMPAR EPSCs over GABA,R
IPSCs (AMPA/GABA ratio) was significantly decreased following
SDe, which recovered after 1 d (F, ¢, = 15.74, n = 17-24 cells
per group from 8—11 mice each, p < 0.001, one-way ANOVA;
control vs SDe, p < 0.001; control vs recover, p > 0.999). These
results indicate a reversible decrease in the E/I ratio of synaptic
inputs onto NAc MSNss after SDe.

A decrease in the E/I ratio suggests a decrease in excitatory
transmission and/or an increase in inhibitory transmission, and
these changes can be expressed either presynaptically or postsyn-
aptically. To test presynaptic alterations, we evoked paired re-
sponses in close successions and examined the paired-pulse ratio
(PPR) of the peak amplitudes of the responses. A presynaptic
reduction in the Pr could be revealed as a reduction in the first
response relative to the second response, and thus an increase in
the PPR (second/first response). As shown in Figure 2, C and D,
SDe significantly increased the PPR of AMPAR EPSCs, which
recovered 1 d after SDe (F, s,y = 6.317,n = 16-21 cells per group
from 6—7 mice each, p < 0.01, one-way ANOVA; control vs SDe,
p <0.01; control vs recover, p > 0.999). Thus, it appears that SDe
reduced presynaptic glutamate release onto the NAc MSNGs.

If presynaptic glutamate release was reduced, then NMDA
receptor (NMDAR) EPSCs should also exhibit an increase in
PPR. As predicted, the PPR of NMDAR EPSCs was also increased
following SDe (control, 0.87 = 0.06, n = 15/7; SDe, 1.01 = 0.04,

= 15/6, p < 0.05; t test; Fig. 2E). Finally, the increase in PPR was
only observed in EPSCs but not IPSCs (control, 0.71 = 0.04, n =
16/6; SDe, 0.75 * 0.02, n = 16/6, p = 0.41; t test; Fig. 2F ). These
results suggest that the presynaptic effects of SDe are only ex-
pressed at glutamatergic synapses.

To examine postsynaptic alterations, we recorded mEPSCs
and mIPSCs in NAc MSNs in mice with or without SDe. No
changes in the amplitudes of mEPSCs or mIPSCs were detected
following SDe (mEPSC, control, 19.46 * 0.56 pA, n = 35/6; SDe,
20.60 * 0.62 pA, n = 35/5, p = 0.19; mIPSC, control, 49.38 =
1.76 pA, n = 17/6; SDe, 53.65 = 1.81 pA, n = 19/5,p = 0.10; ¢
test), suggesting no overall postsynaptic changes. However, the
frequency of mEPSCs and mIPSCs also did not show difference in
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sleep-deprived mice (mEPSC, control, 6.60 = 0.68 Hz, n = 35/6;
SDe, 6.02 = 0.57 Hz, n = 35/5, p = 0.53; mIPSC, control, 3.21 =
0.39, n = 17/6; SDe, 5.32 * 1.14, n = 19/5, p = 0.09; t test),
suggesting that the changes in glutamate release described above
could involve only a subset of synapses—synapses that have ei-
ther a relatively low number of active release sites and/or a low Pr.
Together, these results suggest a lack of postsynaptic alterations
in the NAc MSNs following SDe and that the SDe-induced pre-
synaptic changes may be pathway specific.

To obtain further insight into the pathway specificity, we first
examined SDe-induced changes in AMPAR EPSCs in dopamine
D, versus D, receptor-expressing (D;R vs D,R) MSNs in the
NAc. These two subtypes of MSNs exhibit certain degrees of an-
atomical and functional segregations, including synaptic inner-
vations by glutamatergic inputs (MacAskill et al., 2012) and
dopamine-mediated signaling (Gerfen and Surmeier, 2011). A
shift in the balance of D,R and D,R MSN activity alters the func-
tional output of the NAc, which has been shown to bidirection-
ally regulate reward-elicited behaviors (Lobo et al., 2010; Lobo
and Nestler, 2011; Yawata etal., 2012). We recorded from Drd1a-
tdTomato mice where D;R MSNs are genetically tagged with
tdTomato; previous studies have shown reliable detections of
D,R versus D,R MSNs in the NAc based on the tdTomato fluo-
rescence signals (Shuen et al., 2008; Grueter et al., 2013). As
shown in Figure 2, G and H, SDe reduced the AMPA/GABA ratio
in tdTomato-positive (operationally defined as D,;R) MSNs
(control, 1.34 = 0.12, n = 16/7; SDe, 0.84 = 0.11, n = 13/5; p <
0.01, t test) as well as increased the AMPAR EPSC PPR (control,
1.05 = 0.05,n = 22/8; SDe, 1.24 = 0.06, n = 13/5; p < 0.05, t test).
Similarly, tdTomato-negative (operationally defined as D,R)
MSN:s also exhibited SDe-induced decrease in AMPA/GABA ra-
tio (control, 1.58 * 0.19, n = 12/7; SDe, 0.74 = 0.07, n = 15/5;
p < 0.001, ¢ test) and increased the AMPA EPSC PPR (control,
0.97 £0.04, n = 18/7;SDe, 1.16 = 0.05, n = 20/5; p < 0.05, ¢ test;
Fig. 21,]). In addition, the PPR of GABAR IPSCs was not altered
by SDe in D;R MSNs (control, 0.80 = 0.05, n = 21/8; SDe, 0.79 =
0.03, n = 14/5; p = 0.833, t test) or D,R MSNs (control, 0.80 =
0.04, n = 17/8; SDe, 0.79 = 0.03, n = 20/5; p = 0.793, t test),
suggesting that there was no change in presynaptic release at
GABAergic synapses. Thus, SDe influences synaptic transmis-
sion to NAc D;R and D,R MSNs in a similar manner.

SDe selectively decreases the Pr at mPFC-to-NAc synapses
We then focused on glutamate transmission within the presynapti-
cally defined pathways. The NAc does not contain local glutamater-
gic neurons. The glutamatergic inputs to the MSNs are long-
projecting axons from multiple brain regions including the mPFC,
hippocampus, thalamus, and BLA, which are highly responsive to
sleep and sleep loss (Muzur et al., 2002; Marshall and Born, 2007;
Yoo et al., 2007; David et al., 2013). To examine presynaptic altera-
tions in a pathway-specific manner, we injected AAV vectors ex-
pressing ChR2-EYFP into one of these locations each time and
measured the Pr of projection-specific glutamate release onto NAc
MSNs under control conditions or following SDe. As shown in Fig-
ure 3, 6—8 weeks after the viral injection, there was robust expression
of EYFP and functional ChR?2 at the sites of injections, as well as
abundant ChR2-EYFP-expressing fibers in the NAc (Fig.
3A,B,E,F,I,J,M,N), indicating direct projections. Light pulses of
0.5-1 ms applied to the NAc selectively activated the intended pre-
synaptic input onto the MSNs (Fig. 3C,G, K, O), allowing pathway-
specific analysis of presynaptic release.

To quantify the Pr within different projections, we performed
the optogenetically based nonstationary V-M analysis (see Ma-
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terials and Methods), which uses optical stimulations to isolate
projections of interest and then estimates the quantal parameters
of transmitter release based on the size and variability of the
postsynaptic responses (Clements and Silver, 2000; Silver, 2003;
Saviane and Silver, 2007; Huang et al., 2011; Suska et al., 2013). A
train (five pulses of 0.1 ms at 20 Hz) of stimuli induced a train of
EPSCs in NAc MSNs (Fig. 3C,G, K, O). Over repeated stimula-
tions, each EPSC within the train should stabilize at a specific Pr,
and the five EPSCs combined would represent the same set of
synapses undergoing five different Prs, thus allowing the V-M
analysis (Meyer et al., 2001; Scheuss and Neher, 2001; Scheuss et
al., 2002). EPSC V-M plot was generated by calculating the mean
and variance of the peak amplitude for each of the five EPSCs
within the train. The V-M plot was then fitted with a parabola
and interpreted assuming binomial statistics of transmitter re-
lease (Quastel, 1997; Silver, 2003). Under control conditions,
synapses within the four projections exhibited different Prs
(F5,56) = 11.42, p < 0.001, one-way ANOVA). Following SDe,
there was a selective reduction of Pr at the mPFC-to-NAc syn-
apses (control, 0.60 = 0.02, n = 17/4; SDe, 0.53 = 0.02, n = 16/6,
p < 0.05, ¢ test; Fig. 3C,D), but not the hippocampus-to-NAc
(control, 0.55 * 0.03, n = 15/2; SDe, 0.56 = 0.03, n = 18/3,p =
0.86, t test; Fig. 3G,H ), thalamus-to-NAc (control, 0.45 = 0.02,
n = 14/5; SDe, 0.41 = 0.03, n = 18/5, p = 0.43, t test; Fig. 3K, L),
or cBLA-to-NAc synapses (control, 0.64 = 0.02, n = 14/3; SDe,
0.66 = 0.02, n = 11/2, p = 0.71, t test; Fig. 30,P). These results
suggest that SDe selectively affects the mPFC-to-NAc projections
to reduce presynaptic glutamate release in the NAc.

Reversing SDe-induced synaptic effects reverses SDe-induced
increase in reward seeking
Does reduced glutamate release within the mPFC-to-NAc pro-
jection contribute to enhanced reward seeking after SDe? To ad-
dress this question, we experimentally strengthened glutamate
release in this projection and examined the behavioral conse-
quences. Specifically, we injected AAVs expressing SSFO-
mCherry into the mPFC (Fig. 4A). SSFO is a mutant form of
ChR2, with sustained channel activity (deactivation 7, ~29 min)
following light activation, which typically induces a modest but
persistent (>40 min) depolarizing current (Yizhar et al., 2011).
We first tested whether SSFO activation at the nerve terminals
would facilitate transmitter release. In NAc-containing sagittal
slices prepared 6—8 weeks after intra-mPFC viral injection, the
SSFO-mCherry-expressing fiber tracks could be clearly identified
in the NAc (Fig. 4 B, C). We then delivered paired-pulse electrical
stimulations to the mCherry-expressing fiber track to preferen-
tially recruit the mPFC-to-NAc afferents, meanwhile recording
from a neuron along the track (Fig. 4C). A single train of LS
centered upon the fiber track persistently enhanced the peak am-
plitude of the electrically evoked EPSCs in SSFO-expressing
slices, compared to control slices that lacked SSFO expression/
activation (LS by time interaction, F(s, gg5) = 1.466, p < 0.05;
main effect of LS, F, 5) = 303.9, n = 9-19, p < 0.001, two-way
RM ANOVA). The light train stimulation also reduced the PPR
in SSFO-expressing slices (second response/first, main effect of
LS, F;55) = 4.590, n = 9-12, p < 0.05, two-way RM ANOVA;
Fig. 4D,E), suggesting increased Pr. These results verify that a
brief light activation of SSFO at mPFC-NAc terminals induces
prolonged enhancing effects on action potential-dependent
transmission, likely by increasing the Pr.

To test whether SSFO activation directly evokes presynaptic
release of glutamate, we recorded EPSCs during the LS train in
the absence of electrical stimulations and measured the peak am-
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plitude and charge transfer during LS. To ensure detection sen-
sitivity, only the positive responders to SSFO activation from
Figure 4E were included in this analysis. As shown in Figure 4F,
the EPSCs during LS (1 s) did not show increased peak amplitude
(baseline, 33.98 = 2.56 pA; LS, 34.02 = 2.93 pA; n = 15; p =
0.986, paired ¢ test) or charge transfer (baseline, 1.58 = 0.31
PA *s; LS, 1.58 £ 0.30 pA * s; n = 15; p = 0.950, paired £ test)
compared with the baseline spontaneous EPSCs (10 s average
before LS). Together, these results suggest that activation of ax-
onal SSFO does not directly evoke transmitter release, but can
facilitate endogenous action potential-dependent transmitter re-
lease. This feature is potentially important to minimize the acti-
vation of axons bypassing the stimulation target area, and is thus
advantageous for in vivo applications.

We then applied the SSFO approach in vivo to test whether
strengthening glutamate transmission in the mPFC-to-NAc pro-
jection would normalize SDe-induced reward seeking. Mice re-
ceived intra-mPFC injection of AAV2-SSFO-mCherry and
bilateral guide cannula implantation just above the NAc (Fig.
4G). The mice then underwent sucrose self-administration train-
ing and tests under four different conditions over the following
6-9 weeks (Fig. 4G). Because of minor fluctuations in the base-
line performance during the 4 week testing period, we present
both the baseline and the testing active-lever pressings, and used
the ratio for statistics. As shown in Figure 4H, the active-lever
pressing showed a significant interaction between SDe and LS
(F(1 56 = 5.291, n = 15 each group, p < 0.05, two-way ANOVA).
Specifically, SDe increased active-lever pressing (control vs SDe,
p < 0.01, Bonferroni posttest); following SDe, LS at mPFC-NAc
terminals significantly reduced lever pressing for sucrose (SDe vs
SDe + LS, p < 0.001, Bonferroni posttest). Importantly, LS alone
did not significantly affect active-lever pressing (control vs con-
trol + LS, p = 0.284, Bonferroni posttest), suggesting that LS
alone did not suppress baseline sucrose seeking. Finally, in the
presence of LS, SDe did not further enhance active-lever pressing
(control + LS vs SDe + LS, p > 0.999, Bonferroni posttest),
suggesting that LS prevented the SDe effect in enhancing sucrose
seeking. The number of sucrose pellets obtained by the mice
under different testing conditions followed the same patterns
(control vs SDe, p < 0.05; SDe vs SDe + LS, p < 0.001; control vs
control + LS, p = 0.186; control + LS vs SDe + LS, p > 0.999;
Bonferroni posttest, two-way ANOVA; Fig. 4I). Furthermore,
the number of inactive-lever presses was not significantly differ-
ent in any of the four testing conditions (SDe by LS interaction,
F(1 56y = 1.709, p = 0.197; main effect of SDe, F, 5¢) = 1.284,p =
0.262; main effect of LS, F, 55y = 0.654, p = 0.422; two-way
ANOVA; Fig. 4]), suggesting that the LS-induced decrease in
sucrose seeking after SDe was not because of a nonspecific sup-
pression of lever pressing. Finally, we tested whether intra-NAc
SSFO stimulation may also affect general food consumption. As
shown in Figure 4K, LS did not alter the consumption of freely
available food pellets following either normal sleep or SDe (SDe
by LS interaction, F, o) = 0.098, n = 10 each group, p = 0.761;
main effect of SDe, F(; o) = 2.939, p = 0.121; main effect of LS,
F,9y = 0.231, p = 0.642; control vs control + LS, p > 0.999; SDe
vs SDe + LS, p > 0.999; Bonferroni posttest, two-way RM
ANOVA), suggesting that LS did not suppress general feeding
behaviors. Together, these results suggest that weakened mPFC-
to-NAc glutamate transmission following SDe contributes to
enhanced sucrose self-administration; compensatorily strength-
ening glutamate transmission at mPFC-to-NAc synapses nor-
malizes sucrose self-administration in mice and counteracts the
SDe effect.
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Figure4. Activation of SSFO in mPFC-to-NAc projection enhances Pr and reduces sucrose seeking after SDe. A, Expression of AAV2-SSFO-mCherry at the mPFCinjection site (*) on a coronal brain
section. B, Expression of SSFO-mCherry within an mPFC-to-NAc projection on a sagittal brain section. €, Dodt contrast (left) and fluorescence (right) images showing the recording configuration on
a sagittal slice. The stimulating electrode was positioned on top of a fiber track that showed SSFO-mCherry expression, and recordings were made from an MSN in close proximity to the fiber track.
D, Example AMPAR EPSCs evoked by paired-pulse stimulations (100 ms interpulse interval) in an NAc MSN before and after LS (10 pulses of 50 ms at 10 Hz). Numbers 1 and 2 indicate when the
averaged traces were recorded; blue lines indicate when the LS occurred. Traces 1and 2 were scaled to the first peak to show the difference in PPR (bottom). E, Summarized results of evoked EPSC
amplitude and PPR (normalized to the baselines before LS) showing enhanced EPSC peak amplitude following LS with the corresponding decrease in PPR. SSFO-expressing mice following either
normal sleep (SSFO) or SDe (SDe + SSFO) were used, and the results were grouped accordingly. Slices without SSFO-mCherry expression but with LS and slices with SSFO-mCherry expression but
without LS were pooled as the control group. Compared to the control, SSFO activation increased the peak amplitude (n = 9-19, p << 0.001) and reduced the PPR of EPSCs (n = 912, p << 0.05)
at the mPFC—NAc afferents. F, Example traces from the same neuron as in D and summarized results showing a lack of increase in either peak amplitude (n = 15, p = 0.986) or charge transfer
(n =15, p = 0.950) during the LS train. A 10 s baseline before LS was measured for peak amplitude (average of the peak amplitude of (Figure legend continues.)
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Discussion

SDe-associated changes in reward processing have been impli-
cated in many pathological emotional and motivational condi-
tions. Our present study shows that SDe induces a selective
weakening of mPFC-to-NAc synapses, reversal of which amelio-
rates the impact of SDe on reward seeking. These results demon-
strate of a causal relationship between sleep-induced neural
adaptations and altered reward-seeking behavior. The results also
exemplify a possibility of restoring SDe-induced abnormal re-
ward seeking by restricted targeting of a specific neural projec-
tion, even though multiple reward-related brain regions are likely
affected by SDe (Venkatraman et al., 2007, 2011; Gujar et al.,
2011; Greer et al., 2013). Together, these results provide a circuit-
based mechanism for understanding how sleep or sleep loss reg-
ulates reward-motivated behaviors.

Selective enhancement of sucrose seeking following SDe

We found that acute SDe led to an increase in sucrose seeking and
consumption, with a contrasting decrease in food consumption
after SDe (Fig. 1K). A trend of decrease (p = 0.121) was also
observed in Figure 4K (control vs SDe). The reason for the re-
duced food intake after SDe was not clear. It is likely that the total
food consumption was increased during SDe, as would be pre-
dicted by the approximately threefold increase in the feeding time
(Fig. 1A). As a result, the mice may not be as hungry after SDe
compared to after sleep, which then led to reduced food intake
after SDe. Indeed, similar paradoxical changes have been ob-
served in chronic REM sleep-deprived rats—their overall daily
consumption of food is increased, but their motivation for food is
decreased (Bhanot et al., 1989; Kushida et al., 1989; Hanlon et al.,
2005, 2010; Koban et al., 2006). In contrast to the potential re-
duction of motivation for food, our results suggest that the mo-
tivation for sucrose reward was selectively enhanced in the mice
following acute SDe. This is also consistent with previous reports
that acute SDe enhances motivation for a variety of natural, arti-
ficial, and drug rewards (Steiner and Ellman, 1972; Brower et al.,
1998; Killgore et al., 2006; McKenna et al., 2007; Venkatraman et
al., 2007, 2011; Puhl et al., 2009, 2013; Gujar et al., 2011; Greer et
al., 2013; Telzer et al., 2013).

Reduced mPFC-to-NAc transmission following SDe

The role of the mPFC in inhibitory top-down cognitive and emo-
tional control has been well documented in various contexts,
including regulation of impulsivity (Jentsch and Taylor, 1999;
Chudasama et al., 2003; Murphy et al., 2005; Hare et al., 2009;
Dalley et al., 2011; Etkin et al., 2011), addictive drug seeking and
relapse (Peters et al., 2008; LaLumiere et al., 2012; Chen et al.,

<«

(Figure legend continued.)  each second) and charge transfer (average per second). For the LS
condition, the peak amplitude and charge transfer were measured for the 1 s starting at LS
onset. G, Top, Schematic view of mPFC expression of SSFO-mCherry and LS in the NAc in vivo.
Bottom, Timeline of surgery, training, and testing, including the order of events on the testing
day. H, Baselines and testing levels of active-lever pressing for sucrose pellets under the control
condition (no SDe and no LS), control + LS, SDe (without LS), and SDe + LS. For statistics, all
lever presses were normalized to the average of a 3 d baseline before each test. *p < 0.01
(compared to control); ***p << 0.001 (compared to SDe). /, Normalized sucrose pellets obtained
under control, control + LS, SDe (without LS), and SDe + LS. All sucrose pellets were normal-
ized to the average of a3 d baseline before each test. “p < 0.05 (compared to control); ***p <
0.001 (compared to without LS). J, Inactive-lever pressing across the four testing conditions did
not show significant difference. n = 15 each group (H-J). K, Consumption of freely available
food pellets was not significantly altered by LS either following control sleep or after SDe.n =
10. All values are represented as mean = SEM. Scale bars: B, 200 m; C, 30 um.
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2013; Ma et al., 2014; Shen et al., 2016; Terraneo et al., 2016), and
major depressive disorder (Wu et al., 1999; Gillin et al., 2001;
Mayberg et al., 2005; Riga et al., 2014). Specifically, the frontos-
triatal projections have long been speculated to provide critical
inhibitory control of the behavioral output of motivations (Jen-
tsch and Taylor, 1999; Feil et al., 2010; Ferenczi et al., 2016).

SDe-induced “disinhibition” of mood and enhanced reward
responding have been consistently observed, which are typically
accompanied by reduced activity of the PFC (Pilcher and Huff-
cutt, 1996; Venkatraman et al., 2007; Greer et al., 2013). Further-
more, the antidepressant effects of SDe are often predicted by the
amount of reduction of prefrontal cortical activity (Wu et al,,
1999; Gillin et al., 2001). Our current results show that SDe se-
lectively decreases the mPFC-to-NAc excitatory transmission
(Fig. 3), which may contribute to a compromised top-down reg-
ulation of the subcortical affective drive to the NAc, unleashing
reward-motivated behaviors. It is worth noting that depending
on the subregions of mPFC and NAc, and experimental condi-
tions, activation of the mPFC-to-NAc projection may also pro-
mote reinforcing behaviors (McFarland et al., 2003; Britt et al.,
2012; Ma et al., 2014). Thus, the mPFC-to-NAc projection may
play a multifaceted role, depending on the actual activation state
and the involved circuits, in regulating reward seeking.

The molecular substrates that mediate the SDe-induced inhi-
bition of glutamate transmission are not clear. A few potential
candidates include adenosine, which accumulates during SDe
(Huston et al., 1996; Porkka-Heiskanen et al., 2000), negatively
regulates neural transmission in the NAc (Brundege and Wil-
liams, 2002a,b), and mediates SDe-induced antidepressant ef-
fects (Hines et al., 2013), and dopamine, whose signaling in the
ventral striatum is dynamically regulated by sleep states (Volkow
etal., 2012), modulates synaptic transmission in the NAc (Penn-
artz et al., 1992; Harvey and Lacey, 1996, 1997; Nicola and
Malenka, 1998; Beurrier and Malenka, 2002; Tritsch and Saba-
tini, 2012; Wang et al., 2012), and impacts mood and reward
seeking (Spanagel and Weiss, 1999; Nestler and Carlezon, 2006).
Both adenosine and dopamine inhibit presynaptic glutamate re-
lease onto NAc MSNs at elevated concentrations. However, it is
not known whether either exhibits pathway-selective sensitivi-
ties. Future studies will need to address the molecular, cellular,
and anatomical substrates that mediate the selective reduction of
Pr at mPFC-to-NAc synapses following SDe.

SSFO-based facilitation of presynaptic release

Activation of SSFO at the soma induces a moderate depolarizing
current (Yizhar et al., 2011), whereas its function at the nerve
terminals has not been well characterized. We observed that se-
lective activation of SSFO at the nerve terminals enhanced the Pr
persistently, but without evoking direct release of transmitters
(Fig. 4D-F). These results suggest that the SSFO-induced modest
depolarization facilitates, rather than triggers, action potential-
dependent presynaptic release. This property provides several ad-
vantages over the use of ChR2 for enhancing transmission of
selected projections in our experiments: (1) it increases the
signal-to-noise ratio of endogenous release; (2) it enhances syn-
aptic transmission, yet follows endogenous release patterns
rather than superimposing an artificial release pattern; and (3) it
minimizes the activation of bypassing axons as it is less likely to
generate action potentials on its own.

The magnitude of facilitation of transmitter release is, how-
ever, dependent on the expression level of SSFO, the stimulation
paradigm, and the quantal parameters of selected projections. As
shown in Figure 4, D and E, the facilitation of glutamate release
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reached a plateau ~5-10 min after light stimulation, even though
SSFO is immediately activated upon light stimulation (Yizhar et
al., 2011). Such a delay suggests secondary mechanisms being
involved. For example, activation of SSFO may also cause Ca**
accumulation, which also increases presynaptic Pr. While many
more details are still needed to understand how SSFO facilitates
synaptic release, our in vitro characterizations verified the stim-
ulation paradigm and the time frame that allowed us to ma-
nipulate projection-specific presynaptic release in vivo in a
relatively reliable manner.

NAc and reward seeking: is there pathway specificity?
Whereas the conventional view holds that different glutamatergic
inputs into the NAc convey different reward-related informa-
tion and affect different aspects of behaviors, it may not be always
necessary to differentiate the excitatory afferents to discern the
behavioral outcomes. For example, gross upregulation or
downregulation of the E/I balance within the NAc is suffi-
cient to decrease or increase food consumption, respectively
(Maldonado-Irizarry et al., 1995; Kelley and Swanson, 1997;
Stratford and Kelley, 1997; Stratford et al., 1998; Kelley, 2004).
Moreover, it was shown previously that direct activation of any
one of the main glutamatergic afferents within the NAc, or direct
activation of NAc principle neuron population, promotes moti-
vated behaviors (Britt et al., 2012, but see Qi et al., 2016). It thus
raises the question whether enhanced reward seeking following
SDe is because of an overall shift in the excitatory tone in the NAc
or, rather, that an imbalance between specific excitatory in-
puts—a reduction in cortical cognitive control relative to subcor-
tical affective drive into the NAc—shapes the altered reward
processing. Addressing this question will help us understand the
anatomical and functional organization of NAc circuits in moti-
vated behaviors.
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